THE EIGENVALUE BEHAVIOR OF CERTAIN CONVOLUTION EQUATIONS

BY H. J. LANDAU

Introduction. In a series of papers [3], [4], [6], we studied the relationship between two closed subspaces of $L^2(-\infty,\infty)$: the subspace \mathcal{D}_T of all $f \in L^2$ supported in |t| < T/2 and the subspace \mathcal{D}_{Ω} of all $f \in L^2$ whose Fourier transforms are supported in $|\omega| < \Omega/2$. We showed that several questions about \mathcal{D}_T and \mathcal{D}_{Ω} could be answered in terms of the eigenvalues of the operator $B_{\Omega}D_TB_{\Omega}$, where B_{Ω} and D_T are the projections onto \mathcal{D}_{Ω} and \mathcal{D}_T respectively; this operator may be written as a finite convolution. Apart from this application, interpretable as describing the way in which the energy of a function of L^2 can be distributed over time and over frequency, the behavior of these eigenvalues is interesting because it differs markedly from that established by H. Widom [7] for the class of finite convolutions with L^1 kernels whose Fourier transforms have an absolute maximum at the origin.

By a change of variable, the eigenvalues of $B_{\Omega}D_TB_{\Omega}$ may be seen to depend on the parameter $c=\Omega T/2\pi$, rather than on Ω and T separately; we may write their equation explicitly as

$$\lambda_n(c)\phi_n^{(c)}(t) = \frac{1}{\pi} \int_{-c/2}^{c/2} \frac{\sin \pi(t-x)}{t-x} \phi_n^{(c)}(x) dx, \qquad n = 0, 1, 2, \dots,$$

and we suppose that $\lambda_0 \geq \lambda_1 \geq \cdots$. For any fixed c, the $\lambda_n(c)$, $n=0,1,\cdots$, form a positive sequence bounded away from 1 and approaching 0 at a rate in n greater than $(ce/n)^{2n}$ [D. Slepian, unpublished]. For any fixed n, the eigenvalue $\lambda_n(c)$ approaches 1 exponentially in c [2]. In [4] we proved, however, that $\lambda_{[c]+1}(c)$ is bounded away from 1 independently of c, and interpreted this to imply that the set of functions in \mathscr{B}_n whose energy is concentrated in |t| < T/2 has, in a well-defined sense, approximate dimension bounded by $[\Omega T/2\pi]$ (1). We also showed that $\lambda_{[c]-1}(c)$ is bounded away from 0 independently of c.

The analogous questions for the case where the intervals |t| < T/2 and $|\omega| < \Omega/2$ are replaced by more general sets T' and Ω' have not been studied. Indeed, most of the methods developed to deal with \mathscr{B}_{Ω} are not applicable to $\mathscr{B}_{\Omega'}$, and very little is known about it. Here we give another, simpler, proof that $\lambda_{|c|+1}(c)$ and $\lambda_{|c|-1}(c)$ are bounded away from 1 and 0 respectively,

Received by the editors December 2, 1963.

⁽¹⁾ [x] denotes the largest integer less than or equal to x.

independently of c. Our method improves considerably on the bound of [4], but its most interesting feature is its extendability to the case that T' and Ω' are each finite unions of intervals.

ACKNOWLEDGEMENTS. I am greatly indebted to H. O. Pollak, D. Slepian, and L. J. Wallen for many interesting conversations.

PRELIMINARIES. We consider the Hilbert space $L^2(-\infty,\infty)$ with the usual definition of the scalar product

$$(f,g) = \int_{-\infty}^{\infty} f(t) \overline{g(t)} dt,$$

and denote by $F(\omega)$ the Fourier transform of $f(t) \in L^2$,

$$F(\omega) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt.$$

If S is an open subset of the real line, we single out two subspaces of L^2 :

$$\mathcal{D}(S) = \{ f \in L^2 | f(t) \equiv 0, \ t \notin S \},$$

$$\mathcal{B}(S) = \{ f \in L^2 | F(\omega) \equiv 0, \ \omega \notin S \}.$$

If S is a bounded set, and $f \in \mathcal{B}(S)$, writing f(t) as the inverse transform of $F(\omega)$ exhibits f as the restriction to the reals of an entire function f(t+iu) of exponential type. If ||f|| = 1, Schwarz's inequality and Parseval's theorem applied to this representation show that f(t+iu) is bounded in any given horizontal strip, by a constant depending only on the strip.

 $\mathcal{D}(S)$ and $\mathcal{B}(S)$ are closed, since the Fourier transform preserves the norm. Let D_S and B_S denote the orthogonal projection operators of L^2 onto $\mathcal{D}(S)$ and $\mathcal{B}(S)$ respectively; their concrete representation is

$$D_S f(t) = \chi_S(t) f(t),$$

$$B_S f(t) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} \chi_S(\omega) F(\omega) e^{i\omega t} d\omega,$$

where $\chi_S(u)$ is the characteristic function of S, i.e.,

$$\chi_S(u) = \begin{cases} 1, & u \in S \\ 0, & u \notin S. \end{cases}$$

If S and S' are two open sets, the operator $B_SD_{S'}B_S$ is bounded by 1, self-adjoint, and positive. If S and S' have finite measure we may write $B_SD_{S'}$ explicitly as

$$B_S D_{S'} \phi = (2\pi)^{-1/2} \int_{-\infty}^{\infty} \chi_{S'}(u) h(t-u) \phi(u) du,$$

where the Fourier transform of h coincides with $\chi_S(\omega)$. Since, by Parseval's theorem,

$$\int_{-\infty}^{\infty} du \int_{-\infty}^{\infty} dt |\chi_{S'}(u)h(t-u)|^2 = \int_{-\infty}^{\infty} |\chi_{S'}(u)|^2 du \int_{-\infty}^{\infty} |\chi_{S}(\omega)|^2 d\omega < \infty,$$

the operator $B_SD_{S'}$ is completely continuous [5, p. 159], and hence so is $B_SD_{S'}B_{S'}$. Consequently [5, p. 233] the spectrum of $B_SD_{S'}B_S$ consists of isolated positive eigenvalues, bounded by 1 and accumulating at zero. In concrete form, the eigenvalue equation is a convolution:

$$\lambda_n \phi_n(t) = (2\pi)^{-1/2} \int_{x \in S'} \phi_n(x) h(t-x) dx.$$

RESULTS.

THEOREM 1. Let P and Q be intervals of lengths W and T respectively, and let $c = WT/2\pi$. Let $\lambda_0, \lambda_1, \cdots$ be the eigenvalues of $B_PD_QB_P$, arranged in nonincreasing order. Then $\lambda_{[e]+1} \leq .6$.

Proof. By a change of scale on the sets P and Q which does not alter c or the eigenvalues λ_i we may normalize the problem so that $W=2\pi$, T=c, P coincides with $|\omega|<\pi$ and Q with -1/2< t< c-1/2. To simplify notation we henceforth drop the subscripts on B_P and D_Q .

The Weyl-Courant lemma [5, p. 238] asserts that

(1)
$$\lambda_{[c]+1} \leq \sup_{(f,\psi_i)=0} \frac{(BDBf,f)}{\|f\|^2},$$

where ψ_i , $i = 0, \dots, [c]$, are any [c] + 1 functions of L^2 . Since B and D are orthogonal projections, they are self-adjoint and idempotent operators, so that

$$(BDBf, f) = (D^2Bf, Bf) = ||DBf||^2.$$

Furthermore $||f||^2 \ge ||Bf||^2$, with equality equivalent to f = Bf, that is to $f \in \mathcal{B}(P)$. Consequently we may rewrite (1) as

(2)
$$\lambda_{[c]+1} \leq \sup_{f \in \mathscr{B}(P); (f, \psi_i) = 0} \frac{\|Df\|^2}{\|f\|^2}, \qquad i = 0, \dots, [c].$$

Let $h(t) \in L^2$ vanish for $|t| \ge 1/2$ and let its Fourier transform $H(\omega)$ satisfy

$$(3) |H(\omega)| \ge 1, |\omega| \le \pi.$$

Now given $f \in \mathcal{B}(P)$, we consider the function

(4)
$$g(x) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} f(t)h(x-t) dt = (2\pi)^{-1/2} \int_{|t-x|<1/2} f(t)h(x-t) dt$$

whose Fourier transform is $F(\omega)H(\omega)$. Since $f \in \mathcal{B}(P)$, the function $F(\omega)$

vanishes for $|\omega| \ge \pi$, and $H(\omega)$ is bounded, so that $F(\omega)H(\omega) \in L^2(-\pi,\pi)$. Let a_k be the (-k)th coefficient of the Fourier series expansion of $F(\omega)H(\omega)$ in $|\omega| < \pi$. By definition

(5)
$$a_k = (2\pi)^{-1/2} \int_{-\pi}^{\pi} F(\omega) H(\omega) e^{ik\omega} d\omega = (2\pi)^{-1/2} \int_{-\infty}^{\infty} F(\omega) H(\omega) e^{ik\omega} d\omega = g(k),$$

whence using Parseval's theorem and (3)

(6)
$$||f||^2 = \int_{-\pi}^{\pi} |F(\omega)|^2 d\omega \le \int_{-\pi}^{\pi} |F(\omega)H(\omega)|^2 d\omega = \sum_{n=0}^{\infty} |a_k|^2 = \sum_{n=0}^{\infty} |g(k)|^2.$$

Next let us in (2) set

(7)
$$\psi_i(t) = \overline{h(i-t)}, \qquad i = 0, 1, \dots, [c].$$

By (4) the conditions $(f, \psi_i) = 0$ are equivalent to g(k) = 0 for $k = 0, \dots, [c]$, so that from (6)

(8)
$$||f||^2 \leq \sum_{k < 0; k > |c|} |g(k)|^2.$$

Schwarz's inequality applied to (4) yields

(9)
$$|g(k)|^2 \leq \frac{\|h\|^2}{2\pi} \int_{|t-k| < 1/2} |f(t)|^2 dt,$$

and the intervals |t-k| < 1/2 with k < 0 and k > [c] all lie outside Q. Hence, combining (8) and (9) gives

(10)
$$2\pi \|f\|^2 \leq \|h\|^2 \int_{t \in Q} |f(t)|^2 dt = \|h\|^2 [\|f\|^2 - \|Df\|^2],$$

whence

(11)
$$||Df||^2 / ||f||^2 \le 1 - 2\pi / ||h||^2.$$

Letting $h(t) = \pi (\pi/2)^{1/2}$ in $|t| \le 1/2$ and 0 elsewhere, (2) and (11) prove $\lambda_{|c|+1} \le 1 - 4/\pi^2 < .6$.

Theorem 1 is established.

H. O. Pollak has shown that, as in [4], the argument of Theorem 1 can serve as a basis for establishing a lower bound independent of c for $\lambda_{|c|-1}$.

Theorem 2 (H. O. Pollak). Under the hypotheses of Theorem 1, $\lambda_{[c]-1} \ge .4$.

Proof. A simple consequence of the Weyl-Courant lemma is

(12)
$$\lambda_{|c|-1} \ge \inf_{f \in S_{|c|}} \frac{(BDBf, f)}{\|f\|^2},$$

where $S_{[c]}$ is any [c]-dimensional subspace of L^2 . If we choose $S_{[c]}$ to be a subspace of $\mathscr{B}(P)$ we may, following Theorem 1, rewrite (12) as

(13)
$$\lambda_{[c]-1} \ge \inf_{f \in \mathscr{B}(P); f \in S_{[c]}} \frac{\|Df\|^2}{\|f\|^2}.$$

Now with the function h(t) of (3), we let $S_{|c|} \subset \mathcal{B}(P)$ be the subspace spanned by the [c] (independent) members of $\mathcal{B}(P)$ whose Fourier transforms are $(2\pi)^{-1/2}e^{-ik\omega}/H(\omega)$ on $|\omega| \leq \pi$, with $k = 0, \dots, [c] - 1$. Then by definition, if $f \in S_{|c|}$, its Fourier transform $F(\omega)$ satisfies

(14)
$$H(\omega)F(\omega) = \sum_{k=0}^{\lfloor c\rfloor-1} b_k (2\pi)^{-1/2} e^{-ik\omega}, \quad |\omega| \leq \pi,$$

so that, as in Theorem 1, we have $H(\omega)F(\omega)$ written as a Fourier series. Then, as in (5), (6), and (9)

(15)
$$||f||^2 \leq \sum_{0}^{|c|-1} |b_k|^2,$$

$$(16) |b_k|^2 = \left| (2\pi)^{-1/2} \int_{|t-k| < 1/2} f(t) h(k-t) dt \right|^2 \le \frac{\|h\|^2}{2\pi} \int_{|t-k| \le 1/2} |f(t)|^2 dt,$$

but now the intervals $|t-k| \le 1/2$ for $k=0,\dots,[c]-1$ all lie inside Q. Hence, combining (15) and (16) gives

(17)
$$2\pi \|f\|^2 \leq \|h\|^2 \int_{t\in\Theta} |f(t)|^2 dt = \|h\|^2 \|Df\|^2,$$

which implies $||Df||^2/||f||^2 \ge 2\pi/||h||^2$ for all $f \in S_{[c]}$. By (13), choosing the h(t) of Theorem 1,

$$\lambda_{|c|-1} \geq .4$$
.

Theorem 2 is established.

B. F. Logan has proved [to appear] that, by proper choice of h(t), the bounds of Theorems 1 and 2 can be improved to .5; together with Lemma 2 this implies that $\lim_{c\to\infty}\lambda_{[c]}(c)=1/2$. We showed in [4] that the change in size of λ_k from near 1 to near 0 occurs in a strip around k=[c] which grows no faster than $\log c$ but also does not remain bounded. Thus the description of the eigenvalues seems fairly complete.

Theorems 1 and 2 possess extensions to the case where the sets P and Q are finite unions of intervals.

Lemma 1. Let S consist of the union of m disjoint intervals and have total measure M. Then

a. the number N(S) of integers k for which the interval |k-t| < 1/2 inter-

sects S does not exceed [M] + 2m;

b. the number N'(S) of integers k for which the interval |k-t| < 1/2 is contained in S exceeds M-2m.

Proof. If S is a single interval, let it coincide with $\alpha < t < M + \alpha$, let k_1 be the least integer with $k_1 + 1/2 > \alpha$ and k_2 the largest integer with $k_2 - 1/2 < M + \alpha$. Then $N(S) = k_2 - k_1 + 1 < M + 2$. Now if S is the union of disjoint intervals S_i of measures m_i , with $i = 1, \dots, m$, then $N(S) \le \sum_i N(S_i) < \sum_i M_i + 2 = M + 2m$, consequently $N(S) \le [M] + 2m$. Similarly, when S is a single interval, let k'_1 be the largest integer with $k'_1 - 1/2 < \alpha$ and k'_2 the least integer with $k'_2 + 1/2 > M + \alpha$. Then $N'(S) = k'_2 - k'_1 - 1 > M - 2$, and if S is the union of m disjoint intervals $N'(S) = \sum_i N'(S_i) > \sum_i M_i - 2 = M - 2m$. Lemma 1 is established.

COROLLARY 1. Let one of the sets P and Q of measures W and T respectively, be a single interval, and the other be the union of m disjoint intervals. With c and λ_n defined as in Theorem 1, $\lambda_{|c|+2m} < .6$ and $\lambda_{|c|-2m} > .4$.

Proof. The spectra of BDB and DBD are identical. For if $BDB\phi = \lambda B\phi$, we apply D to both sides and use the idempotency of D to obtain $DBD(DB\phi)$ $=\lambda(DB\phi)$, and conversely. Consequently, in the proof of Theorems 1 and 2, the roles of t and ω are interchangeable. We may accordingly suppose that P consists of a single interval, which we normalize as before to coincide with $|\omega| < \pi$, whereupon Q becomes the union of m disjoint intervals of total measure c. Let N(Q) and N'(Q) be as in Lemma 1. We may now in the proof of Theorem 1 replace |c|+1 by |c|+2m in (1) and argue without further change until (7), where we choose $\psi_i(t) = h(i-t)$ for those i counted by N(Q). By Lemma 1, the number of functions so obtained does not exceed |c| + 2m, inequality (10) follows as before, and we may repeat the rest of the argument to show that $\lambda_{[c]+2m} < .6$. Similarly, in the proof of Theorem 2 we replace [c] - 1 by [c] - 2m in (12) and $S_{[c]}$ by the subspace S of $\mathscr{B}(P)$ spanned by the functions whose Fourier transforms on $|\omega| \leq \pi$ are $(2\pi)^{-1/2}e^{-ik\omega}/H(\omega)$ for those k counted by N'(Q). By Lemma 1, the number of functions so obtained exceeds c-2m and, being an integer, is no smaller than $\lfloor c \rfloor - 2m + 1$. Hence S has dimension at least $\lfloor c \rfloor - 2m + 1$, and we may repeat the rest of the argument to show that $\lambda_{|c|-2m} > .4$. Corollary 1 is established.

THEOREM 3. Let P and Q be unions of p and q disjoint intervals of total measure W and T respectively. Let c and λ_n be defined as in Theorem 1. Then $\lambda_{|c|+2pq} \leq J < 1$, where J is a constant depending only on P (suitably normalized) but not on Q.

Proof. We may again suppose $W=2\pi$ and T=c, since this may always

be achieved by a change of scale on the sets P and Q which does not alter c, p, q or the eigenvalues λ_n , and we drop the subscripts of B_P and D_Q . Let us denote by $\sigma_1, \dots, \sigma_p$ the disjoint intervals comprising P, let $2\pi l_N$ be the length of σ_N , and $\chi_N(\omega)$ be its characteristic function. Let $h_N(t)$ be a function of L^2 which vanishes for $|t| \ge 1/2l_N$ and whose Fourier transform $H_N(\omega)$ satisfies

$$(18) |H_N(\omega) - \chi_N(\omega)| < \epsilon, \quad \omega \in P,$$

with $\epsilon = \{32p^2 + 16\sum_N [1/l_N]\}^{-1/2}$. Such an $h_N(t)$ exists, since $\chi_N(\omega)$ is continuous on P, and Fourier transforms of functions vanishing outside any fixed interval are uniformly dense in continuous functions on any compact set. Let $\gamma_N = ||h_N||^2$.

As in Theorem 1, we will base our proof on the Weyl-Courant lemma, which asserts that

(19)
$$\lambda_{[c]+2pq} \leq \sup_{f \in \mathscr{B}(P): \{f, \psi_i\} = 0} \frac{\|Df\|^2}{\|f\|^2},$$

where ψ_i , $i = 1, \dots, [c] + 2pq$, are any [c] + 2pq functions of L^2 . Now given $f \in \mathcal{B}(P)$ with Fourier transform $F(\omega)$ we consider the function

$$(20) g_N(x) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} f(t) h_N(x-t) dt = (2\pi)^{-1/2} \int_{|t-x| < 1/2l_N} f(t) h_N(x-t) dt,$$

whose Fourier transform is $F(\omega)H_N(\omega)$. By definition and a change of variable

$$(l_{N})^{-1/2}g_{N}(k/l_{N}) = (2\pi l_{N})^{-1/2} \int_{P} F(\omega)H_{N}(\omega) \exp(i\omega k/l_{N}) d\omega$$

$$= (2\pi l_{N})^{-1/2} \int_{P} \sum_{r} \chi_{N}(\omega + r2\pi l_{N}) F(\omega)H_{N}(\omega) \exp(i\omega k/l_{N}) d\omega$$

$$= (2\pi l_{N})^{-1/2} \int_{\sigma_{N}} \left\{ \sum_{r} F(\omega - r2\pi l_{N})H_{N}(\omega - r2\pi l_{N}) \right\} \exp(i\omega k/l_{N}) d\omega$$

$$= \int_{\sigma_{N}} \left\{ F(\omega) + R_{N}(\omega) \right\} (2\pi l_{N})^{-1/2} \exp(i\omega k/l_{N}) d\omega,$$

where

(22)
$$R_N(\omega) = \sum_r F(\omega - r2\pi l_N) \left\{ H_N(\omega - r2\pi l_N) - \chi_N(\omega - r2\pi l_N) \right\}, \quad \omega \in \sigma_N$$

Since the functions $(2\pi l_N)^{-1/2}\exp(i\omega k/l_N)$ form a complete orthonormal set on σ_N , (21) implies

(23)
$$l_N^{-1} \sum_{k=-\infty}^{\infty} \left| g_N \left(\frac{k}{l_N} \right) \right|^2 = \int_{\sigma_N} |F(\omega) + R_N(\omega)|^2 d\omega.$$

To estimate the size of $R_N(\omega)$ on σ_N , we observe that the summands which do not vanish identically on σ_N correspond to those r for which the translate of σ_N by $r2\pi l_N$ intersects P. By Lemma 1, applied with a change of scale, the number of such terms does not exceed $[1/l_N] + 2p$. Hence Schwarz's inequality and (18) applied to (22) yield

$$\int_{\sigma_{N}} |R_{N}(\omega)|^{2} d\omega \leq \{ [1/l_{N}] + 2p \}
\int_{\sigma_{N}} \sum_{r} |F(\omega - r2\pi l_{N}) \{ H_{N}(\omega - r2\pi l_{N}) - \chi_{N}(\omega - r2\pi l_{N}) \} |^{2} d\omega
= \{ [1/l_{N}] + 2p \} \int_{P} |F(\omega) \{ H_{N}(\omega) - \chi_{N}(\omega) \} |^{2} d\omega
\leq \epsilon^{2} \{ [1/l_{N}] + 2p \} ||F||^{2}.$$

Also, by Schwarz's inequality applied to (20),

(25)
$$|g_N(k/l_N)|^2 \leq \frac{\gamma_N}{2\pi} \int_{|t-k/l_N| < 1/2l_N} |f(t)|^2 dt.$$

Now, again by Lemma 1, the number of points k/l_N for which the interval $|t-k/l_N| < 1/2l_N$ intersects Q does not exceed $[cl_N] + 2q$. As in Theorem 1, we will require f(t) to be orthogonal to the function $\overline{h_N(k/l_N-t)}$ for each such k/l_N ; by (20) this is equivalent to the vanishing of $g_N(k/l_N)$. Thus by imposing no more than $[cl_N] + 2q$ orthogonality conditions on f, the sum on the left-hand side of (23) is extended over only those k for which the interval $|t-k/l_N| < 1/2l_N$ lies entirely outside Q, so that by (25)

(26)
$$\int_{\sigma_N} |F(\omega) + R_N(\omega)|^2 d\omega \leq \frac{\gamma_N}{2\pi l_N} \int_{t \in Q} |f(t)|^2 dt.$$

We expand the left-hand side of (26) and sum on N. We conclude that subjecting f(t) to the requirements $(f, \psi_i) = 0$, $i = 1, \dots, M$, where ψ_i are fixed functions in L^2 , each of the form $h_N(k/l_N - t)$ for some N and k, and $M \le \sum_{N} \{ [cl_N] + 2q \} \le [c\sum_{N} l_N] + 2pq = [c] + 2pq$, ensures

(27)
$$\sum_{N} \left\{ \int_{\sigma_{N}} |F(\omega)|^{2} d\omega + \int_{\sigma_{N}} |R_{N}(\omega)|^{2} d\omega + 2 \operatorname{Re} \int_{\sigma_{N}} F(\omega) \overline{R_{N}(\omega)} d\omega \right\} \\ \leq \sum_{N} \frac{\gamma_{N}}{2\pi l_{N}} \int_{t \in \mathcal{Q}} |f(t)|^{2} dt.$$

Now $\sum_{N} \int_{\sigma_{N}} |F(\omega)|^{2} d\omega = ||F||^{2} = ||f||^{2}$. By Schwarz's inequality, (24), and the definition of ϵ ,

(28)
$$\left|\sum_{N} 2\operatorname{Re} \int_{\sigma_{N}} F(\omega) \overline{R_{N}(\omega)} d\omega \right| \\ \leq 2\sum_{N} \left\{ \int_{\sigma_{N}} |F(\omega)|^{2} d\omega \right\}^{1/2} \left\{ \int_{\sigma_{N}} |R_{N}(\omega)|^{2} d\omega \right\}^{1/2} \\ \leq 2\left\{ \sum_{N} \int_{\sigma_{N}} |F(\omega)|^{2} d\omega \right\}^{1/2} \left\{ \sum_{N} \int_{\sigma_{N}} |R_{N}(\omega)|^{2} d\omega \right\}^{1/2} \\ \leq 2\epsilon \|F\|^{2} \left\{ 2p^{2} + \sum_{N} \left[1/l_{N} \right] \right\}^{1/2} = \|f\|^{2}/2,$$

so that from (27)

(29)
$$||f||^2/2 \le \left\{ \int_{t \in Q} |f(t)|^2 dt \right\} \sum_{N} \frac{\gamma_N}{2\pi l_N} = \{ ||f||^2 - ||Df||^2 \} \sum_{N} \frac{\gamma_N}{2\pi l_N}.$$

Setting $J=(\sum_{N}\gamma_{N}/l_{N}-\pi)/(\sum_{N}\gamma_{N}/l_{N})<1$ we may rewrite (29) as $\|Df\|^{2}/\|f\|^{2}\leq J$,

whence by (19) $\lambda_{|c|+2pq} \leq J < 1$. The constant J depends on P (normalized to have measure 2π) since the numbers γ_N and l_N do, but it does not depend on Q. Theorem 3 is established.

Theorem 4. Under the hypotheses of Theorem 3, $\lambda_{|c|-2pq} \ge 1 - J > 0$.

Proof. We normalize P to have measure 2π , as in Theorem 3, and let σ_N , l_N , ϵ , $\chi_N(\omega)$, $h_N(t)$, γ_N , and J be as defined there. As in Theorem 2, we will base our proof on the modification of the Weyl-Courant lemma which asserts that

(30)
$$\lambda_{|c|-2pq} \ge \inf_{f \in \mathscr{H}(P); f \in S} \frac{\|Df\|^2}{\|f\|^2},$$

where S is a subspace of dimension at least [c] - 2pq + 1.

For each $N=1,\cdots,p$ we let I(N) be the set of integers k for which the interval $|t-k/l_N|<1/2l_N$ is contained in Q, and we define S as the subspace generated by those members of $\mathscr{B}(P)$ whose Fourier transforms are the functions $\chi_N(\omega)(2\pi l_N)^{-1/2} \exp(-i\omega k/l_N)$ with $k\in I(N)$. By Lemma 1, applied with a change of scale, the number of integers in I(N) exceeds cl_N-2q , so that the total number of generators exceeds $\sum_{N=1}^p (cl_N-2q)=c-2pq$ and, being an integer, is no smaller than [c]-2pq+1. Since the generators form an orthonormal set, the dimension of S is at least [c]-2pq+1, as is required.

If $f \in S$, its Fourier transform, by definition, satisfies

$$F(\omega) = \sum_{k \in I(N)} a_{N,k} \exp(-i\omega k/l_N) (2\pi l_N)^{-1/2}, \qquad \omega \in \sigma_N,$$

and because the above exponentials are orthonormal over σ_N we find

(31)
$$||F||^2 = \sum_{N=1}^p \sum_{k \in I(N)} |a_{N,k}|^2.$$

Introducing the functions $g_N(x)$ of (20) and $R_N(\omega)$ of (22) we obtain, as in (21),

(32)
$$(l_N)^{-1/2} g_N(k/l_N) = \int_{\sigma_N} F(\omega) (2\pi l_N)^{-1/2} \exp(i\omega k/l_N) d\omega$$

$$+ \int_{\sigma_N} R_N(\omega) (2\pi l_N)^{-1/2} \exp(i\omega k/l_N) d\omega,$$

and we denote by $c_{N,k}$ the last term in (32). Another appeal to the orthonormality of $(2\pi l_N)^{-1/2} \exp(i\omega k/l_N)$ on σ_N , combined with (24), shows, for $k \in I(N)$,

(33)
$$(l_N)^{-1/2}g_N(k/l_N) = a_{N,k} + c_{N,k},$$

(34)
$$\sum_{k \in I(N)} |c_{N,k}|^2 \leq \int_{\sigma_N} |R_N(\omega)|^2 d\omega \leq \epsilon^2 \{ [1/l_N] + 2p \} ||F||^2.$$

Now from (33) and (25), together with the definition of I(N),

(35)
$$\sum_{k \in I(N)} |a_{N,k} + c_{N,k}|^2 = l_N^{-1} \sum_{k \in I(N)} |g_N(k/l_N)|^2 \le \frac{\gamma_N}{2\pi l_N} \int_{t \in Q} |f(t)|^2 dt.$$

We expand the left-hand side of (35) and sum on N. Using Schwarz's inequality, (31), (32), Parseval's theorem, and the definition of ϵ , we find, just as in (28),

$$\left| \sum_{N=1}^{p} 2 \operatorname{Re} \sum_{k \in I(N)} a_{N,k} \overline{c_{N,k}} \right| \leq ||f||^{2}/2,$$

so that, by (31) and Parseval's theorem,

(36)
$$||f||^2/2 \le ||Df||^2 \sum_{N} \frac{\gamma_N}{2\pi l_N},$$

or

$$||Df||^2/||f||^2 \ge 1-J$$

for all $f \in S$. By (30), $\lambda_{|c|-2pq} \ge 1 - J > 0$. Theorem 4 is established.

LEMMA 2. Let P be any fixed set of measure 2π , and Q_k be a sequence of

sets, each the union of q intervals, and of total measure $c_k \to \infty$. Then the number of eigenvalues of $B_P D_{Q_k} B_P$ contained in any fixed subinterval of the unit interval cannot remain bounded as $k \to \infty$.

Proof. To simplify notation we will write B and D_k instead of B_P and D_{Q_k} , respectively.

M. Rosenblum has shown [to appear] that the Wiener-Hopf operator $Af = (2\pi)^{-1/2} \int_0^\infty h(t-x) f(x) \, dx$, $t \ge 0$, on $L^2(0,\infty)$ may be taken into a Toeplitz transformation by a unitary mapping. If the Fourier transform $H(\omega)$ of h(t) is bounded, the spectrum of A may then be determined by the results of [1]. In particular, when $H(\omega)$ is real, this method shows the spectrum of A to consist of all numbers between ess $\sup H(\omega)$ and $\operatorname{ess inf} H(\omega)$. I am indebted to H. Widom for suggesting this argument, on which our proof will be based.

Letting S be the set $t \ge 0$, D be the projection D_S , and $H(\omega)$ be the characteristic function of P, the operator DBD coincides with A. Thus the spectrum of DBD consists of all $0 \le \lambda \le 1$.

We now show that DBD and BDB have the same spectra. For by definition, if $0 < \lambda < 1$ is not in the spectrum of BDB, the operator $BDB - \lambda B$ has an inverse bounded by some M. Then from the equation $DBDf - \lambda Df = g$, using the idempotency of projections and their boundedness, we obtain

$$|\lambda| \|Df\| - \|g\| \le \|\lambda Df + g\| = \|DBDf\| \le \|BDf\|$$

= $\|(BDB - \lambda B)^{-1}Bg\| \le M\|g\|$.

But since $Df = (DBD - \lambda D)^{-1}g$, this shows $DBD - \lambda D$ to have an inverse bounded by $(M+1)/|\lambda|$, contradicting the fact that λ is in the spectrum of DBD. Since the spectrum of BDB is a closed subset of the unit interval, it consists of all $0 \le \lambda \le 1$.

Next let $\tau_i(k)$, $i=1,\cdots,q$ be the (i)th interval of Q_k , counted from the left. Let r be the least integer for which the length of $\tau_r(k)$ becomes unbounded as $k\to\infty$; $1\le r\le q$, since by assumption $c_k\to\infty$. Because the eigenvalues of BD_kB are not affected by a translation of Q_k , we may suppose that the left-hand endpoint of $\tau_r(k)$ coincides with the origin. By choosing a suitable subsequence of the sets Q_k , we may also suppose that each $\tau_i(k)$, i< r, converges to a limit (possibly to infinity). Let S' be the set of all points on $-\infty < t < 0$ which are limits of points in $\tau_i(k)$, i< r, and let D' denote the projection $D_{S'}$. Then for any fixed $\phi \in L^2$,

as $k \to \infty$.

Since by definition of r the lengths of $\tau_i(k)$, i < r, are bounded, S' has finite measure, so the operator BD'B is completely continuous. By a theorem

of Weyl [5, p. 367], the addition of such an operator to the bounded self-adjoint BDB does not change any limit point of the spectrum. Thus the spectrum of B(D+D')B contains all $0 < \lambda < 1$. Consequently given λ , $0 < \lambda < 1$, and $\epsilon > 0$, there exists a function Bf_{ϵ} with $||Bf_{\epsilon}|| = 1$ and

$$||B(D+D')Bf_{\epsilon}-\lambda Bf_{\epsilon}||<\epsilon/2.$$

Now by (37) we may choose k_0 so that for all $k > k_0$, $\|(D+D')Bf_{\epsilon} - D_k Bf_{\epsilon}\| < \epsilon/2$. Since $\|B\| \le 1$, this implies $\|B(D+D')Bf_{\epsilon} - BD_k Bf_{\epsilon}\| < \epsilon/2$, and combining this with (38) yields $\|BD_k Bf_{\epsilon} - \lambda Bf_{\epsilon}\| \le \epsilon$. Then by the triangle inequality

$$||BD_kBf_{\epsilon}|| \geq \lambda - \epsilon,$$

and since BD_kB is bounded by 1,

But by [5, p. 234] the eigenfunctions $\phi_i^{(k)}$ of BD_kB are sufficient to expand any element in its range. Thus we may write

$$BD_k Bf_{\epsilon} = \sum_i a_i \phi_i^{(k)},$$

whence by (39)

$$(\lambda - \epsilon)^2 \leq \|BD_k Bf_{\epsilon}\|^2 = \sum_{i} |a_i|^2,$$

and

$$(BD_kB)^2f_{\epsilon} = \sum_i a_i BD_k B\phi_i^{(k)} = \sum_i a_i \lambda_i^{(k)} \phi_i^{(k)},$$

where $\lambda_i^{(k)}$ is the (i)th eigenvalue of BD_kB . Introducing (41) and (43) into (40) yields by (42)

$$\epsilon^2 \ge \sum_i |a_i|^2 |\lambda_i^{(k)} - \lambda|^2 \ge \inf_i |\lambda_i^{(k)} - \lambda|^2 (\lambda - \epsilon)^2.$$

Choosing ϵ sufficiently small, we conclude that every neighborhood of λ will contain an eigenvalue of BD_kB for all $k > k_0$.

To complete the proof of the lemma, given any subinterval I of the unit interval, and any integer N, we divide I into N disjoint subintervals. By the above, each of these subintervals will contain an eigenvalue of BD_kB for all k sufficiently large. Thus the number of eigenvalues of BD_kB contained in I cannot remain bounded as $k \to \infty$. Lemma 2 is established.

COROLLARY 2. Under the hypotheses of Theorem 3, with any fixed integer N,

$$\lambda_{|c|-N} \leq J_1 < 1$$

where J_1 is a constant depending on P (suitably normalized), q, and N, but not on Q.

Proof. We will argue by contradiction. Accordingly, let us suppose that for a given P, normalized as in Theorem 3 to have measure 2π , there exists a sequence of sets S_k , each the union of q intervals and of total measure c_k , for which $\lambda_{|c_k|-N} \to 1$. To simplify notation, let us denote the projections B_P and D_{S_k} by B and D_k respectively, and the eigenvalue $\lambda_{|c_k|-N}$ of BD_kB by λ_k^* .

By Theorem 3, $\lambda_{|c_k|+2pq} \leq J < 1$, and we are assuming $\lambda_k^* \to 1$. Thus for all K sufficiently large, the interval $J \leq x \leq (J+1)/2$ will contain no more than 2pq + N eigenvalues of BD_kB . We conclude by Lemma 2 that the measures c_k of S_k must be bounded: $c_k < C$.

Now let $\psi^{(k)}(t)$ be the eigenfunction of BD_kB corresponding to λ_k^* , normalized so that $\|\psi^{(k)}\| = 1$. We find, as in the transformations leading to (2)

(44)
$$\int_{S_k} |\psi^{(k)}(t)|^2 dt = \lambda_k^* \to 1.$$

Consequently, for one of the q subintervals of S_k , which we denote by $\tau(k)$,

(45)
$$\int_{I(k)} |\psi^{(k)}(t)|^2 dt > 1/2q.$$

Since the eigenvalues of BD_kB are not affected by a translation of S_k along the t-axis, we may suppose that the left-hand endpoint of $\tau(k)$ coincides with the origin. As we showed in the preliminary remarks, it follows from the normalization $\|\psi^{(k)}\|=1$ of $\psi^{(k)}\in\mathscr{B}(P)$ that the functions $\psi^{(k)}(t)$ form a uniformly bounded family of analytic functions in any horizontal strip including the real axis, thus a normal family there. We may therefore suppose that

$$\psi^{(k)}(t) \to \psi(t),$$

uniformly on compact subsets of the t-axis, for this may always be ensured by choosing a suitable subsequence; $\psi(t)$ is then also analytic. For the same reason we may suppose that each subinterval of S_k converges to a limit (possibly to infinity). Since $c_k < C$, this limit of S_k has finite measure, so its complement includes some finite interval I; thus there exists k_0 such that I is disjoint from every S_k , $k > k_0$. Then for $k > k_0$, by the normalization of $\psi^{(k)}$ and (44),

$$\int_{I} |\psi^{(k)}(t)|^{2} dt \leq \int_{t \in S_{k}} |\psi^{(k)}(t)|^{2} dt = 1 - \int_{S_{k}} |\psi^{(k)}(t)|^{2} dt$$
$$= 1 - \lambda_{k}^{*} \to 0,$$

whence by (46)

$$\int_I |\psi(t)|^2 dt = 0,$$

or $\psi(t)=0$, $t\in I$. The analyticity of $\psi(t)$ then implies $\psi(t)\equiv 0$. On the other hand, let $0< t<\alpha$ be the limit interval of $\tau(k)$. Since the functions $\psi^{(k)}(t)$ are uniformly bounded, (45) implies $\alpha\neq 0$, and $c_k< C$ implies $\alpha< C$. We may then again apply (46) on the finite interval $0\leq t\leq \alpha$ to conclude $\int_0^\alpha |\psi(t)|^2>1/2q$, whence $\psi(t)\not\equiv 0$, and we have reached a contradiction. Corollary 2 is established.

COROLLARY 3. Under the hypotheses of Theorem 3, with any fixed integer N and $c \ge 1$,

$$\lambda_{|c|+N} \geq J_2 > 0,$$

where J_2 is a constant depending on P (suitably normalized), q, and N, but not on Q.

Proof. The restriction $c \ge 1$ is necessary, since as $c \to 0$ every eigenvalue approaches 0. As in the proof of Corollary 2, we will argue by contradiction. Accordingly, let us suppose that for a given P, normalized as in Theorem 3 to have measure 2π , there exists a sequence of sets S_k , each the union of q intervals and of total measure c_k , for which $\lambda_{|c_k|+N} \to 0$. To simplify notation, we denote the projections B_P and D_{S_k} by B and D_k respectively, and the eigenvalue $\lambda_{|c_k|+N}$ of BD_kB by λ_k' .

By Theorem 4, $\lambda_{|c_k|-2pq} \ge J' > 0$, and we are assuming $\lambda'_k \to 0$. Thus for all k sufficiently large, the interval $J'/2 \le x \le J'$ will contain no more than 2pq + N eigenvalues of BD_kB . By Lemma 2, the measures c_k of S_k must be bounded: $c_k < C$. Then $[c_k] + N < [C] + N$ so that

$$\lambda_k' \ge \lambda_{|C|+N_2}^{(k)}$$

where $\lambda_{[C]+N}^{(k)}$ is the eigenvalue $\lambda_{[C]+N}$ of BD_kB . Since S_k has total measure $c_k \geq 1$, at least one of its q subintervals will have measure exceeding 1/2q. Because the eigenvalues of BD_kB are not affected by a translation of S_k , we may suppose S_k to include the interval $I: 0 \leq t \leq 1/2q$. Letting T_k denote the remainder of S_k , we may write $BD_kB = BD_lB + BD_{T_k}B$. As we showed in the preliminary remarks, the latter operator is positive, thus by an application of the Weyl-Courant lemma [5, p. 239],

$$\lambda_{|C|+N}^{(k)} \geq \lambda_{|C|+N}^{(I)}$$

where $\lambda_{[C]+N}^{(I)}$ is the eigenvalue $\lambda_{[C]+N}$ of BD_IB , and hence is positive. Combining the above with (47) yields $\lambda_k' \geq \lambda_{[C]+N}^{(I)} > 0$, and since the right-hand quantity is independent of k, this contradicts our assumption that $\lambda_k' \to 0$. Corollary 3 is established.

BIBLIOGRAPHY

1. A. Calderon, F. Spitzer, and H. Widom, Inversion of Toeplitz matrices, Illinois J. Math. 3 (1959), 490-498.

- 2. W. H. J. Fuchs, On the eigenvalues of an integral equation, Notices Amer. Math. Soc. 10 (1963), 352.
- 3. H. J. Landau and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty. II, Bell System Tech. J. 40 (1961), 65-84.
- 4. _____, Prolate spheroidal wave functions, Fourier analysis and uncertainty. III, Bell System Tech. J. 41 (1962), 1295-1336.
 - 5. F. Riesz and B. Sz-Nagy, Functional analysis, Ungar, New York, 1955.
- 6. D. Slepian and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty. I, Bell System Tech. J. 40 (1961) 43-64.
- 7. H. Widom, Extreme eigenvalues of N-dimensional convolution operators, Trans. Amer. Math. Soc. 106 (1963), 391-414.

Bell Telephone Laboratories, Incorporated, Murray Hills, New Jersey